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AFIT/GAE/ENY/90D-19

Abstract

Graphite/epoxy curved cylindrical panels were impacted in the
center by an impact machine capable of measuring load during the test.
Load, deflection and strain as functions of time were measured for six
symmetric layup configurations for impact energies of 0.5 to 4.5 ft-1b.
Damage was produced in all panels for certain impact energies. The
extent and location of damage was determined from C-scans and optical
microscopy of panel cross—sections. The cross—sections indicated that
both delamination and transverse cracking contribute to internal damage.

An in-house nonlinear finite element code was used to predict the
panel deflections and stresses. The analysis produces good results in
predicting the [0/90]3s panel deflection and indicated transverse
failure stresses were present in the panel center region. The
deflections indicated that the panel was in between simply supported and
clamped boundary conditions, with good agreement obtained for hinged

support at each edge.
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IMPACT DAMAGE IN CURVED GRAPHITE/EPOXY PANELS

WITH CLAMPED EDGES

I. Introduction

1.1 ZBackground

Composite materials, particularly chose employing high strength-to-—
weight fibers are seeing increased use in a number of aerospace
applications. Composites offer the advantages of tailoring material
properties to provide the greatest strength in the direction of highest
load. Graphite/epoxy has several distinct advantages for aerospace
applications. It has both high strength-to-weight and high stiffness-
to~weight ratios, allowing aircraft designers significant weight savings
opportunities. It has good fatigue properties and is resistant to many
environmental factors.

Initially, composites in aerospace vehicles were used for sccondary
structures such as the aircraft control surfaces. However, efforts
continue for application of composites as primary structure components
including the fuselage, tail, wings and engine mounts.

Similarly, analysis of composite materials has progressed through
several stages of development, from simple orthotropic models based on
plane stress toward more complex analytical and numerical methods taking
into account the out of plane stresses, interlaminar shear stresses and
interlaminar failure criteria.

Interest in the response of composite plates and shells to
transverse impact loading and their damage resistance has increased in
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recent years also. Composites are susceptible to damage from impact by
objects dropped from a small height, such as tools dropped during
manufacture or repair. Several types of damage can result from impact,
including delaminations, transverse cracks in the layers, surface damage
or indentation and layer tensile failure.

A great deal of experimental work has been performed on the impact
of flat composite plates, primarily under simply supported boundary
conditions. These experiments have relied heavily on post-test
characterization as a means of quantifying the damage present in the
panels. For example, 0'Kane and Benham (16) showed that a damage
threshold exists, below which no damage occurs, based primarily on the
results of C-scans of the specimens. Cantwell and Morton (1) used
optical microscopy results to formulate a semi~empirical methodology for
predicting low velocity impact damage in composite beams. Wu and
Springer (24) did similar research on plates, comparing the micrograph
results to a 3-D finite element model analysis. Foos (8) used C~scans
and stereo x-rays to investigate the location and shape of delaminations
in flat plates. Senn (20) obtained stereo x-rays and optical microscopy
on cylindrical panels.

Another measure of damage is the reduction in panel strength under
various loading conditions. Compressive load is of primary interest,

since delaminations separate the plies and thus can significantly
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influence the buckling response. Post-impact strength has been used as
a measure of damage in both Fflat and curved composite structures (10,16,
20).

Instrumentation to measure the applied force-time history and
impact velocity have been used on recent tests of flat plates by
Foos (8) and cylindrical panels by Senn (20). Use of additional
instrumentation such as strain gauges has been extremely sparse. Lin
and Lee (13) tested glass fiber composite cylindrical panels with strain
gauges on the surface away from the impact point. The response time of
the strain gauges is completely adequate to measure dynamic events of
duration of a few microseconds (15), so there should be no difficulty in
measuring the vibrational response of the panel as a whole to impact.

Analytical approaches to the solution of the dynamic response of
orthotropic cylindrical panels have been relatively few (13,18).
However, several approaches have been pursued for orthotropic flat
panels which can be used for comparison (3,6,17,21,24). There are two
ways to implement the loading function in the analysis. One method is
to use the Hertz law to predict the contact force function and solve
simultaneously for the deflections (3,17,21,24). A simplification of
this would be to assume inelastic impact and apply conservation of
momentum to determine the impact loading (13). The other approach is to
treat the load function as an input to the solution (6,18). If the
ratio of impactor mass to target mass is very large, the details of the
contact force are of lesser importance (3) and the methods produce

similar results.



1.2 Purpose

The purpose of this research is to comparc damage resulting from
impact in cylindrical graphite/epoxy panels to a dynamic analysis of the
impact. Six different ply layups were used. The threshold energy at
which damage occurs was determined for these cases experimentally.
Using the load measured during the experiment as the applied force, the
experiments were analyzed with a finite element model based on shell
elements incorporating transverse shear deformation. The panel
deflection and stress under conditions producing damage were then
compared to the experimental results.

1.3 Scope

The experiments performed as part of this thesis incorporated both
post—test inspection of the samples and in-situ instrumentation to
characterize the response of cylindrical composite panels to impact
loading. In addition to the use of C-scans, optical microscopy and
strain gauges, the panel deflection was measured using a noncontacting
optical sensor. The impact energy necessary to produce damage in six
different ply layups was determined.

Comparison to the experimental data was made with a finite element
model incorporating transverse shear deformation theory. The load
function was treated as a known input function in this analysis. The
deflection of the panel and the stresses in the panel were calculated
using the impact load measured in the experiment. The analytical

results for a panel with hinged edges compare well with the results

obtained experimentally.
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ITI. Experimental Procedurcs

The experiments are a major portion of the work accomplished for
this thesis. In chapter 2, the materials and equipment used to complete
the experiments are identified and described. Equipment performance
parameters and data collection techniques are explained.

2.1 Materials

The specimens used in this series of tests were curved cylindrical
panels made of AS4/3501-6 graphite/epoxy. The panels were 12 and 24
plies thick (0.06 and 0.12 inches). The panels were fabricated as 21.2
inch by 38.2 inch sheets from pre—impregnated tape on a curved mandrel.
These large panels were vacuum bagged on the mandrel and cured in a
large autoclave using the standard cure cycle contained in Appendix A.
Eight individual panels were cut from these large panels using a high
pressure water jet saw. The size of each cut panel was 8 by 8 inches
measured along the surface, with a radius of curvature of 12 inches on
the external surface.

Fiber volume fraction and void content were measured from the
material left from the cutting process at selected locations from the
panel center and edges. The results of these measurements indicate a
slightly higher void contenct (1.5! percent average) than that obtained
in flat panels (typically less than 1 percent). The curvature of the
panel causes some difficulty in control of the resin flow, making the
void content slightly higher.

Bach panel was scanned using an Aerotech 25 MHz, 0.25 inch, alpha

transducer attached to a one—inch lucite delay line. The signals were
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visually monitored for loss of back-surface signal or echo signals
between the front and back surface signals. The panels showed thinning
around the edges, but no defects were found in any of the panels. It is
thought that the thinning was caused by the water jet eroding
horizontally during the cutting process. However, the thinned region is
a small area compared to the area of the panel which is clamped in place
during testing, so it should have a negligible effect on the test
results.
2.2 Impact Pacility and Equipment

The experiments were performed at the Low Velocity Impact Facility
in the Wright Research and Development Center (WRDC) Structural Test
Facility (building 65), Wright-Patterson Air Force Base, Ohio. The
impact machine is a General Research Corporation GRC 8250 Dynatup drop
weight impact test machine, shown in Figure 2.1. The impactor drop
weight is 6.84 1b, so the impact assembly mass is 0.213 slugs or about
3.1 kg. This 1s the mass of the entire lower portion of the impactor
assembly which is dropped, " ‘cluding both the impact tup and the
brackets which hold it centered on the impact site. The impactor
asscmbly is adjusted to the correct drop height using a cable to raise
and lower the impactor. The upper piecce of the assembly has a clevice
which is released to drop the lower part of the assembly onto the panel.
The drop weight assembly slides down along a set of lubricated tubes to
keep the impactor aligned on the center of the impact zone. A set of
pneumatic brakes are initiated so as to catch the impactor as it

rebounds off the panel, preventing multiple bounces on the panel.




——
.

it Ao et e Al e e

o et st

Figure 2.1. Dynatup Impact Test Machine

Single impact events are needed in order to characterize the damage
accurately, since multiple bounces could influence the damage results.
The panel is placed on an aluminum support block manufactured for
previous tests by Senn (20) and secured in place by a curved plate. The
complete assembly, shown in Figure 2.2, is then positioned beneath the
impactor. The support block and hold-down plate each have a cutout area
in the center of 5 by 5 inches. Since the panel is 8 by 8 inches, 1.5
inches of panel edge are clamped on all four sides. In order to attempt
to better approximate clamped boundary conditions, the support block and
hold-down plate were redrilled, placing three bolts near each of the

panel edges.



Figure 2.2. Support Block and Hold-down Plate Asscmbly

2.3 Instrumentation

Two instruments are used as part of the standard test equipment
included with the impact test machine, a load cell and a velocity
detector.

The lnad cell is attached to the drop weight so that it measures
the load applied by the impactor during the time it is in contact with
the panel. The velocity is determined based on the time required for a
strip of wocal {a velocity flag) to pass a photodetector beam placed

just above the panel being impacted. A thin imetal strip is attached to




the drop weight assembly. When the beam is first occluded by the metal

strip, the photodetector senses the drop in light intensity and toggles
a voltage signal off. When the metal strip passes the beam of light,
the photodetector senses the increase in light intensity and toggles the
voltage signal on again.

As described by the manufacturer (9:91-94), if the time ty = g is
the time from the first occlusion of the beam of light to the first
reappearance of the beam, and the width of the velocity flag is Xo = Xy,

then

Vl = (X2 - Xl)/(tz - tl) - 1/2 g (tz - tl) (2.1)

and

V2 = (X2 - Xl)/(tz - tl) + 1/2 g i(tz - tl) (2.2’)

where Vi is the velocity when the top of the flag crosses the detector,
Vo is the velocity when the bottom of the flag crosses the detector and
g is the local gravitational constant (g = 32.174 ft/s%. Furthermore,

the impact velocity can then be found to be

Vimpact = V2 * 8 (3~ tp (2.3)

where ty = ty is the time from when the bottom of the flag crosses the
beam to the time when the impactor hits the panel. Vimpact is the impact
velocity used to determine the impact energy and other parameters.
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Besides the data available from the impact machine, two other
diagnostics were included in this series of tests. The first additional
instrument is an MTI-1000 Fotonic Sensor, shown in Figure 2.3. This is
an optical probe used to measure displaccment of the panel center. The
instrument contains a fiber optic probe which contains both emitting and
collecting optical fibers. ‘Lne emitting fibers send out a beam of light
which is focused on a small area of the target. The light must be
reflected back into the collecting fibers. Based on the position of the
collecting fibers, the amount of light collected is related to the

distance from the probe to the reflective surface. The details of the

A
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Figure 2.3. MII-1000 Potonic Sensor




operating principle of this device are described in References 12 and
14. As the probe is moved away from the surface, the reflected light
increases rapidly to a maximum value (at the optical peak), after which
it tapers off. An optical extension to the probe (the KD-LS-1A
Extender) was used on this test series to increase the standoff distance
of the probe.

When the optical extension is used, however, a null point exists
when the probe is 0.35 inches from the surface. This is explained in
Reference 12 as follows:

When. the distance from the KD-LS-1A to the reflecting
target is approximately the same as the focal length, an
image of the probe face will appear on the surface of the
reflective target. This image is then transmitted back
through the KD-LS—~1A and is reimaged onto the probe face.
Therefore, the returning light enters the fibers it
originated from, and the signal fibers receive little light.
... When the target distance is displaced slightly in either
direction from the focal point, the image is blurred and the
returning light begins to enter the signal fibers. This
action generates a peak in output signal at either side of
the null., (12)

The experiments were performed with the instrument positioned far
enough away from the target so that the signal was never in the null
region. The second optical peak occurs at approximately 0.375 inches
from the target surface, so a starting position of approximately 0.6
inches from the target was chosen. Using these conditions, the
allowable panel deflection could be up to approximately 0.225 inches.

The optical probe is placed vertically leneath the panel in the
impact machine. To provide the necessary reflectivity of the surface,

a piece of aluminum tape is attached to the panel at the center. The

MTI-1000 machine converts the light level seen by the collecting fibers
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into a DC voltage which can be read from a panel on the front or from a
cable connection on the back. The output voltage was calibrated to
correspond to a given position from the surface, as shown in Figure 2.4.
Based on changes in the output voltage during the test, the changes in
position of the panel can then be calculated.

In addition, a stacked rosette of strain gages was used to measure
the surface strain on the lower surface of the panel at a point 0.5 inch
along the circumferential direction from the panel center. The strain
gages used were Micro Measurements type WK-06~060WR-350. The threc legs
of the rosette were aligned in the 0, +45 and 90 degree directions,
where the O degree direction is along the longitudinal axis of the
panel, the 90 degree is along the circumferential direction and the
coordinate system is right-handed, as seen from the bottom of the panel.

2.4 Data Collection and Processing

The signals from the velocity detector and the load cell are both
collected by a General Research Corporation GRC 730-1I Instrumented
Impact Test Data System. This 1s an IBM PC—XT computer with a high
speed data acquisition card. The signals from both the iload cell and
velocity detector are collected, converted to engineering units and
stored on disk.

From the collected data, several important parameters are derived.
The impact velocity Vimpact is found from Equations 2.1-2.3, using the

. £ £ . L . . )
time of first rise in the load cell as ta The impact energy, Elmpacv

can then be found from

- 2
Eimpact ~ 1/2 m (Vimpacé (2.4)
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The impact energy can also be calculated based on the drop height as
E = mgh , where h is the drop height, so that the impact velocity can be
found from the drop height by

Vimpact = (2 & W)L/ (2.5)

The impact velocity calculated from Equation 2.5 and that obtained
from the velocity flag differ by less than 0.1 ft/s under almost all
conditions. The difference is caused by imprecision in the measurement
of the drop height, which predictably becomes worse for very small drop
heights. The impact velocities reported for each test are obtained from
the velocity flag (not from Equation 2.5) and the reported impact energy
is based on Equation 2.4.

The data obtained by the Dynatup can be used to also determine
other parameters such as the velocity as a function of time, v(t); the
deflection of the panel as a function of time, x(t); and the energy
which is lost or absorbed during the experiment, E,. The procedures are
described in Reference 9, and are expanded on here for clarity. These
calculations, however, assume that energy is conserved during the impact
event, an assumption which would not be correct for panels suscaining
any appreciable damage.

If the load function measured by the load cell is denoted as P(t)

and the impactor assembly weight is mg, then the total force acting on

the load cell is

F(t) = mg - P(t) (2.6)
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The impactor acceleration after release but prior to impact is g, so the

acceleration during the impact process is
a(t) = g = P(t)/m (2.7)

and from this, the velocity function, v(t), is found from

v(t) -J'ta(t‘)dc‘ = gt - 'rlﬁ .[;P(t*)dc“ (2.8)

Signals from the load cell are sampied every 0.025 ms. 1f impact occurs

at sample zero with impact velocity vg = Vimpact and each time increment

is At = 0.025 ms, then the velocity at the nth step is given by

Bl P,y + P;
vp= v+ nght - %l y [[_IL_J‘]AC]

=1 2 (2.9)

using the trapezoid rule to approximate the integrated impulse. This is
the method in which the software numerically reduces the data.

The position is given by
x(t) =J [J a(t)dt|dt =Jv(E)df:
tle t (2.10)

=thedg - T”t [me gilai (2.11)
t

2-11




In numerical form,

n . ,
xn=x0+ Y [[_V_l'_l;_v‘] Ac] (2.12)

Letting xp = 0 be the initial displacement,

n . .
xp= Y [(__Vl‘l; Vl]At] (2.13)
1

i=1

The absorbed energy, Ea(t), is calculated as the difference between
the impact energy and the kinetic and potential energies at time t.
Setting time t equal to the time at which the impactor force drops to
zero (i.e., it 1s no long;r in contact with the panel) gives the energy

absorbed during the test. The absorbed energy is given by (9:94)
E(t) = T(0) - T(t) - V(t) (2.14)

where T(0) is the kinetic energy at the time of impact (the impact
energy) and T(t) and V(t) are the kinetic and potential energies of the
impactor at the time that the load drops to zero again. The kinetic and
potential energies of the panel have been neglected in this calculation.
Each of the three strain gauges were connected to Gould Electronics
Model 56-1301-00 programmable signal conditioners containing a bridge
circuit. The output voltage from the strain gauge circuits and the MI1-

1000 Fotonic Sensor were collected by a Gould high speed data
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acquisition system and stored on disk. A Compaq 286 computer served as

the controllier. Each channel was sampled at 100,000 samples per
(0.010 ms intervals). The signals were then converted to strain
displacement. The data acquisition equipment is shown in Figure

with the GRC 730-1 at left and the Gouid cquipment on the right.

Figure 2.5. Data Coliection Equipment

second

and




III. Exporimental Results

The experiments produced measurements of a number of parameters
during the test. The load, energy, and deflection as functions of time
were obtained from the Dynatup. Strain and deflection as function of
time were obtained from the strain gauges and MII sensor. The effect of
increasing impact energy (by increasing the drop height) on these are
important in determining the panel response. 1In addition, C-scans and
optical microscopy of the panel cross—section beneath the impact point
were obtained to characterize the damage. Table 3.2 summarizes the key
measurements obtained during the experiments. The results in each
category will be discussed in detail.
3.1 Impact: Energy

The impact energies needed to cause damage in the six different ply
configurations are shown in Table 3.1. The [90/0]3S:was the most
damage sensitive of the 12-ply layups, whereas the [% 45]3s was the
least damage sensitive. The 24-ply panels were all damaged with the 4.5
ft-1b impact energy, but none of them were damaged at the 3.3 ft-1b

energy level.

Table 3.1. Impact Energies Producing Damage in Graphite/Epoxy Panels

Ply Layup 1Impact Energy Ply Layup Impact Energy
[0/90]3S 1.9 ft-1b [0/90]6s 4,5 ft-1b
[90/0]3s 1.6 £t-1b [90/0]65 4.5 ft-1b
[+ 45]3s 2.2 ft-1b [ 45]6s 4.5 ft-1b
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3.2 Load

Figure 3.1 shows an example plot of load and energy as functions
of time obtained from the Dynatup instrument. Additional plots are
included in Appendix B. The load shows a large oscillation beginning as
the load reaches a level of about 290 lbs; however the fluctuations
subside as the load is removed.

It is expected that these large variations in the force between the
plate and the impactor are the result of damage in the material, since
they do not occur on tests at lower impact energies. Previous
experimenters in impact testing have observed a similar phenomena,
attributed to excitation of harmonic oscillations in the impactor or the
panel (2). These oscillations were observed to be particularly
prevalent in brittle material specimens.

It has been found that as the impact drop height is increased, the
maximum load increases, but the time over which the load is applied
stays constant. The load-time function can be accurately described as
one-half cycle of a sine wave, with the period of the wave being a
function only of the ply layup and panel thickness. The integrated

impulse, I, can then be expressed as

T
I = J“P'sinft_tdt (3.1)
0

where P is the peak load and t is the time over which the load is

applied (which is half the period of the loading frequency).
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This integrates to

1=28L (3.2)
n
For low velocity impact where no damage occurs, if we apply
conservation of linear momentum
‘e - . T 3.3
mVimpact MVfinal =1 = 2'}5; (3.3)
But VEinal ¥ “Vimpact + S°
P 0 impact (3.4)

T

This indicates a load relationship which is directly proportional
with impact velocity. TFigure 3.2 shows the effect of increasing impact
velocity on peak load. The predictions from Equation 3.4 for average T
are shown for comparison.

For panels in which damage occurred, the load reported is the
highest load sustained before failure occurred, not the peak load. This
is because, once damage occurs, the large fluctuations in the measured
load -make it difficult to discern the true load. As can be seen in the
figure, the ply layups do follow a nearly proportional relationship with

velocity over the range of impact velocities below the damage threshold.
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Energy is not conserved, however, during a real impact process.
Energy is lost in the nonconservative processes such as the friction
between the panel and the plates holding it in place, the material
damping process and the actual processes -producing damage in the panel.
These influences will reduce the impulise mecasured on the panel, and
hence also reduce the maximum force.

3.3 Displacement Measurement from Dynatup

The peak deflections obtained by numerical integration from the
Dynatup are summarized in Table 3.2. Deflection plots are shown in
Appendix B for all tests performed as part of this test series. As
stated in Chapter 2, the absorbed energy assumes conservation of total
energy. The absorbed energy measured at the time the load drops to zero
is the energy absorbed by the panel due to the sum of processes not
accounted for in the integration. Since the Dynatup data acquisition
system accounts only for kinetic and potential energies, losses are not
taken into account during the load cycle. This creates a problem in
that the velocity does not approach zero at the same time that the load
reaches its maximum, causing an overprediction of deflection. The time
of peak deflection is also shifted forward relative to the load. This
illustrates one advantage of a direct measurement of displacement over
numerical derivation from the load-time curve.

3.4 Displacement Measu?ement from MTI-1000

The peak displacements measured by the MTI-1000 are shown in Table
3.2 and Figures 3.3 and 3.4, The displacements at which damage occurs
are approximately 0.10 inches for the [90/0]3, panel and 0.13 inches

for the [0/90]3; and [f 45]3, panels. These displacements are about
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two times the panel thickness. Generally, if displacements are over
half the panel thickness, a nonlinear analysis is necessary. The
displacements at which damage occurs in the 24-ply laminates are 0.07 to
0.10 inches, which is less than the thickness of the laminate. It is
expected, however, that shear deformation contribi.es significantly to
overall displacement in the thicker panels.

One limitation on the MII measurement method is that it cannot
measure displacements beyond the time at which damage initiates in the
panel. At the time that the material fails, the MTI signal rapidly
drops. When the load is released, the signal does not return to its
original state. The cause of this change in signal is distortion of the
reflective tape applied to the panel, resulting in a lower reflectivity.
However, the means by which panel damage causes this problem is still
unknown,

Examples of this response are shown in Appendix B in tests at the
higher impact energies (Pigure B.24, for example). Thus, for undamaged
panels, the load from the Dynatup and displacement from the MII are the
maximum values recorded during the tests. For tests in which damage
occurred, both the load and displacement are the values at the time
damage started. One might expect that the load and displacement at
which damage occurs are constants. If this were true, the load and
displacement values reported would level off at the highest impact
energies. However, because the impact event is dynamic, such a

straightforward relationship is not observed for most cases.
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3.5 Strain Gauge Response

The strain gauges measured strain at a point 0.5 inches from the
panel center along the circumferential axis of the panel. The strain as
a function of time for the three channels (0, +45 and 90 degree
directions) are shown in Appendix B. Some interesting differences are
observed among the different ply layups.

The [0/90]3, and [90/0]3, laminates show very similar responses,
as do the [0/90]¢, and [90/0]¢, laminates. The shape of the strain-
time traces are similar for the three directions and show no changes as
the impact energy is increased, until damage in the panels occurs. For
the 12-ply laminates, at the time damage occurs in the panel, the 90
degree (circumferential) strain shows a marked increase, whereas the
other two strain measurements show only a small change. Examples of
this can be seen in Figures B.18, B.21 and B.24 for the [0/90]35 panels
and Figures B.36, B.39 and B.42 for the [90/0]3; panels. FPor the
24~ply panels, the strains show a sudden drop in all measurements, as
seen in Figures B.72 and B.84, which is consistent with the large drop
in load after failure occurs, shown in Figures B.70 and B.82.

The [ 45]3s layup, on the other hand, shows a different response
in the 90 degree (circumferential) strain, as shown in Figures B.453,
B.48, B.51, B.54, B.57 and B.60., The initial strain response is
negative, but then changes to positive as the load is increased. During
unloading, the strain response is identical, crossing over from positive

to negative before ultimately returning to zero from a negative state.
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The [# 45]6S panel shows a negative strain in the 90 degree direction
throughout the entire loading cycle, as shown in Figures B.87, B.90 and
B.93.

The maximum strains recorded during each test are summarized in
Table 3.2 and shown in Figures 3.5 through 3.10. More experimental data
would be desirable to obtain a more statistically significant result,
but the general trend is that the strains increase in a monotonic manner
with increasing impact energy. At the highest energies, the 0 and 45
degree strains do not increase as rapidly due to the reduction in load-
carrying capability following damage. The 0 and 45 degree strains
increase in a near linear relation with impact energy. However,
extrapolation to zero impact energy suggests that a nonlinear response
must occur at the smallest impact energies.

3.6 C-scans

C-scans of the panels were performed both before and after the
experiments, None of the panels showed damage befcre testing. After
being impacted, C-scans of some panels showed no damage at all. Only
the panels at the highest impact energies showed damage. These results
correlate with the observations of large load oscillations and an
audible snap in the panels impacted at higher energies.

C-scans of the panels which sustained damage are shown in Figures
3.11 through 3.16. The [0/90]3s and [0/90]6s damage shape is
approximately circular, whereas the damage shape for the [90/0]3S and
[90/0]¢ panels is elliptic, with the length of the damaged area being
greater over the circumferential direction. The [% 45]35 and [+ 45]¢,

panels show a damage pattern which is rectangular in shape.
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The size of the damaged iregion is greater in the 24~-ply panels than
in the 12-ply panels. The C-scans, however, show patterns which are the
superposition of the vertical projection of all damage in the panel.
They give no indication of the depth in the laminate at which damage
occurs. The information regarding the depth location where damage is
present is obtained from a cross—sectional view of the panel edge.

3.7 Optical Microscopy

The panels which sustained damage were cross—-sectioned along the
longitudinal axis using a water-cooled diamond saw. The central 3/4
inch area of the panel was removed and potted in epoxy. After curing,
the specimens were polished, first with sandpaper and then with diamond
paste of increasing fineness down to 1 pm diameter. The samples were
photographed with an optical microscope under 50x and higher
magnifications.

Photographs of the specimen cross—sections are shown in Figures
3.17 through 3.22. The panels show two modes of damage: delaminations
between the individual layers and transverse cracking within the layers.
The [0/90]3, panel shows a primary delamination between the fourth and
fifth layers from the top surface and a smaller one between the seventh
and eighth layers. The panel also shows transverse cracking in the 90
degree plies. The [90/0]3, panel shows a major delamination directly
under the first ply from the top of the panel and smaller delaminations
between the third and fourth layers, the fifth and sixth layers, the
eighth and ninth layers and the tenth and eleventh layers (i.e., on

every interface where a 90 degree layer was on top of a 0 degree layer).




The [+ 45]3s panel shows a complicated pattern of crack branching in
which the delaminations cut throtugh layers and continue along a
different ply interface.

The 24-ply panels show similar results for the three layups. The
[0/90]¢, panel shows a pattern of delaminations which form in the
center of the panel, become transverse cracks to cut through the 90
degree layers and then continue to the edge of the specimen along the
new interface. The main delaminations are between the eleventh and
twelfth layers and the eighteenth and nineteenth layers from the top of
the panel, but further from the impact point shift to positions between
the thirteenth and fourteenth layers and the nineteenth and twentieth
layers. The transverse cracks in the layers are oriented at an angle
away from the impact point and are more prevalent at the sides of the
impact location than directly under the center. The [90/0]¢, panel
shows a similar pattern, with the primary delamination between the
eighteenth and nineteenth layers from the top and smaller delaminations
between the seventh and eighth layers, the eleventh and twelfth layers
and the thirteenth and fourteenth layers. A large number of angled
cracks can also be seen in the 90 degree layers. The [+ 45],. panel
shows two main delaminations, between the eleventh and twelfth layers
and the twentieth and twenty-first layers from the top of the panel.
Additional.smaller delaminations are observed in the photographs, but
they appear larger than they are due to dark residue on the sample

surface. A cube of material at the center appears to have failed in a

classic shear deformation pattern.




Figure 3.17. View of [0/90]35 Cross-section Beneath Impact Point,
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Figure 3.18. View of [90/0]3s Cross—section Beneath Impact Point,
50x Magnification
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Figure 3.20. View of [0/90]¢. Cross-section at Side of Impact Point,
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Figure 3.21.

View of [90/0] ¢ Cross-section Beneath Impact Point,
50x Magnification
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In summary, the panel damage appears to be a combination of
delaminations and transverse cracks. For the panels with O and 90 degree
plies, the delaminations occur along the interface between a 90 degree
and 0 degree ply and are larger in area in layers near the back of the
panel. The transverse cracks occur only in the 90 degree layers, which
is reasonable given their relatively low transverse stiffness and
strength. Similar cracks might by expected in the O degree layers if a
cross—section were taken along the circumferential direction., For the
panels containing layers at %45 degrees, there is a larger number of
transverse cracks and delaminations, which appear to interact in crack
propagation. In the [* 45] . panels, an overall pattern is not
discernable. However, this could be influenced by the fact that the
cross—section was not taken along one of the material principal axes.
3.8 Summary

Measurements of the load, displacement and strain were obtained for
tests from impact energies of 0.5 to 4.5 ft-1lb. The impact energies
needed to cause damage to six different ply layups were determined. The
deflections at failure indicate the need for analysis using a nonlinear
model incorporating transverse shear. C-scans and optical microscopy
indicate that delaminations occur at interfaces where the fibers are in
different directions above and below the delamination. Transverse

cracking is observed in the 90 degree layers as well,
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IV. Analysis

In analyzing experiments under impact loading, a dynamic model is
needed to solve for the deflections and strains as functions of time.
For composites, where shear deformation can be very import;nt,
incorporation of the transverse shear terms t,, and Tyz in the solution

is necessary for accurate stress solutions.
4.1 Background

Previous analyses incorporating transverse shear have been applied
primarily to flat plates. Whitney and Pagano (23) applied the bending

equations derived by Yang, Norris and Stavsky (25), including transverse

shear deformation, for anisotropic laminated plates for simply supported

and hinged/free boundry conditions. Dobyns (6) derived solutions based
on Whitney and Pagano's work for the simply supported orthotropic flat
plate for both static and dynamic loads, assuming that the loading
function was given from instrumentation. Rankumar and Thakar (18) used
Donnell approximations and a Fourier series expansion in their dynamic
analysis to find the radial displacement for a simply supported
cylindrical panel under a distributed force. These analyses all assumed
that the loading function was a given quantity.

Other analyses have incorporated calculation of the force on the
panel as a function of time to form a coupled set of nonlinear
equations. Sun and Chattopadhyay (21) calculated the contact force from
the Hertz iaw for a specially orthotropic hinged flat rectangular
laminated plate. Christoforou and Swanson (3) produced a closed form
solution by linearizing the contact force equations applied to a simply

4-1
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supported graphite/epoxy flat plate. Qian and Swanson (17) used both
the Rayleigh Ritz method and an analytical approach based on Laplace
transforrations to analyze a simply supported, square composite plate.
Newmark integration was used to solve the dynamic equations.

Christoforou and Swanson originally were concerned with a very
small impact mass (8.4g). However, they found that by increasing the
impactor mass substantially, the response is approximated as "quasi-
static", or the behavior exhibited by a spring-mass system (i.e.,
sinusoidal) with the plate stiffness and impactor mass predominately
influencing the equations (3). All of the previous analyses incorporate
shear correction factors in the equations based on the Reissner-Mindlin
plate equations to satisfy equilibrium.

4,2 Analysis Methodology

Approaches to the solution of nonlinear geometric problems
incorporating transverse shear deformation without the use of shear
correction factors have been investigated by Reddy (19) and Dennis (5).
The static solution derived by Dennis has been incorporated into a
dynamic analysis by Tsai and Palazotto (22). This method has b‘een used
in the analysis of the experimental data.

Dennis' approach assumes a parabolic transverse shear strain
distribution through the thickness, satisfying the requirement that the
transverse shear strains be zero at the upper and lower surfaces. The
analysis neglects the normal stress c,, based on order of magnitude

arguments in comparisen with Ty, and T, for thin shells.

z yz
The derivation of the stress-strain relationship for the lamina

follows the discussion in Jones (11:34-37). The lamina is assumed to be

=2




transversely isotropic relative to the 2-3 plane. By also assuming

0,,= 0, but retaining the t,,and Ty terms, the stress-strain relation

reduces to

6,) [Qu Q2 O O 0] fe,)
o, Q2 , 0 0 0 2
{Ta3} = 0 0 Ch‘ 0 0 (T}

(4.1)
F13 0 0 0 Q5 0

Fa) [0 0 O 0 Qg fe)

where oy, 09 and og are the in-plane longitudinal, tangential and
shear stresses, o, = To3 and 65 = T3 are the transverse shear stresses,
¢, and &, are the in-plane strains in the fiber direction and
tangential to the fiber direction, e, = Y23 and €5 = ¥,3 are the
engineering transverse shear strains (123 =2 823), and ¢ = Y49 is the
in-plane engineering shear strain. The coefficients of the matrix [Q]

are as follows:

Q1= By / (1 = vypvo)
Q19= Vo1Bp / (1 = Vyo¥9,)
Q2= By / (1 = vq9voq)

Q4= G233 Q557 Gy33 Qge= Gy2

where the terms By, Bpand Vv, are the longitudinal and tangential
moduli and the in-plane Poisson's ratio, Vo1= V0B /Bl and Gyp, Gq3 and

Go3 are the shear moduli in the 1-2, 1-3 and 2-3 planes, respectively.
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The strain-displacement relationships used in the analysis are the

Donnell cylindrical shell relations at the midplane.

The expressions

derived by Dennis (5: 331-332) based on the Donnell approximations are

as follows:

d 2
X

Gs=av -L"+C a*s—__a_; +(3k[_a_s. 62W] _;

(

au dv + 0 Ny N, T

il P~ - FaY- R

+C3k[ 2w a*x “s] Ow Ow
%% 95 o) T=Ts

and the transverse shear strains are given by

°4=['g§ + s] + 3c2k[gg "'*s]

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

where u, v and w are the displacements in the x, s and { cylindrical

coordinate system, ¥, and ¥, are the components of rotation not due to

b~4



transverse shear deformation, { is the distance from the midplane
measured positive toward the center of the radius of curvature, R is the
radius of curvature and k = —4/3h2 is a thickness parameter.

The finite element formulation is based on the 36~DOF shell element
shown in Figure 4.1, allowing both rigid body and shear components of
rotation at the corner nodes. The solution algorithm developed by
Dennis is applied by Tsai and Palazotto to dynamic problems by use of
Hamilton's principle to satisfy equilibrium on the potential energy np ,
such that

ta
5J (E=~T=~Wg)dt =0

(4.7)
t1

where E contains the strain energy, energy loss due to damping, and the
body force energy term, T is the kinetic energy and We is the work from
external forces. FPor a shell composed of L layers, the three terms in

the variation become (22)

L k
(k) . (k) (B (k) , (B k), (K
SE = o, 685 +c /vy  6vy  + P 6us’) df dQ
sz___l (1{1 ij "vij J J J J) (4.8)
L G ® ©, ®
K
6T = P /v:’6uy df de
!z’élq[_l J J (4.9)
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and

6We-J Fi6u;de =0 (4.10)
Q

where i and j are indices which vary from 1 to 3, ck-l and (k_ are the
positions of the bottom and top surfaces for the kth layer, cigk),~
Geigk), Pj(k), 6uj(k), vj(k), p(k), c(k) are (for the kth layer) the
stress tensor, variation of the strain tensor, body force vector,
variation of the displacement vector, the velocity vector, mass density
and damping coefficient. Fj is the vector of applied forces. The
summation is over L layers of the laminate and 2 is the surface area
integral of the neutral surface. In our analysis, damping and body
forces have been neglected, considerably simplifying the strain energy
term (Bquation 4.8).

The finite element formulation obtained from Equations 4.7 - 4.10

follows the form
[MI{Gd} + icl{a} + [K1{u} = {P(t)} (4.11)

However, the global stiffness matrices incorporate terms up to quadratic

in displacement. The stiffness matrix [K] is given by (5)

[K] = [Ko"‘ Nl /2 + N2 /3] (4.12)



where K is an array of constant coefficients, Ny is an array of
coefficients that are linear in displacement, No is an array of
coefficients that are quadratic in displacement, P(t) is a column of
loads at the nodes, and {u} is a column of nodal displacements (and
rotations).

Porce-displacement equilibrium is iteratively solved by the
Newton-Raphson method. Newmark integration was used as the
time-marching method of integration in all analyses.

4.3 Numerical Results

Analysis of several tests were performed to compare the strains and
displacements to experimental results. Because of the limitations on
computer speed and memory, only two of the laminates were investigated,
the [0/90]3, and [% 45]5,.

For the [0/90]3, panels (12-ply), only ene quadrant of the test
area needed to be modeled, since the twisting coefficients Avgr Lugs
Di¢ and Dy¢ are zero for laminates containing only plies with fibers
aligned in the 0 and 90 degree directions. An exuwple case was run with
4 by 4, 6 by 6 and 8 by 8 grids of square elements. The difference
between the 4 by 4 and 6 by 6 grids was less than 10 percent, whereas
the difference between the 6 by 6 and 8 by 8 grids was less than 2
percent. Based on these comparisons, the 8 by 8 grid (0.3125 inch
element size) was deemed adequate for analysis of these tests.

For the [t 45]3s test, it was necessary to model the full panel.

This is because the bending-twisting coefficients Djg and Dy¢ are not




zero, so the deflection pattern in the panel will not be symmetric in
the four quadrants. The element size was kept constant and the total
number of elements was quadrupled to 256.

The time step size used was 0.05 ms. It was found that use of a
time step of 0.1 ms occasionally produced inaccuracies 1eaaing to
unstable results causing nonconvergence and program termination. The
0.05 ms time step produced identical results to the 0.02 ms time step,
indicating that it was small enough to maintain accuracy in the results.

Other parameters included in the analysis include the following:

Mass density: 1.5088 E-04 slugs / in3
Ply thickness: 0.005 in

By = 20.46 B+06 Lbf/in

Bp = 1.34 E+06 1bf/in?

Gy9= 0.8638 E+06 1bf/in?

Gy3= 0.8638 E+06 1bf/in?

Gp3= 0.4319 E+06 1bf/in?

Vo= 0.3131

The load was applied as a point force at the panel center.
Material outside the 5 by 5 inch opening was neglected for both clamped
and hinged boundary conditions. The boundary conditions are defined as

follows:

4~9




Clamped:

along x = 0, symmetry B.C.: u = L =0

along s = 0, symmetry B.C.: v = WogT ts =0

along x = +2.,5, geometric B.C.: u=v =w = W g ’s = .x =0

along s = +2,5, geometric B.C.: u=v = w = 's =W T ’x'- 0
Hinged:

along x = 0, symmetry B.C.: u = LS ¢x= 0

along s = 0, symmetry B.C.: v = WS ’s= 0

along x = +2.5, geometric B.C.: u=v = w = Wos= *s =0

along x = +2.5, geometric B.C.: u = v

4]
z
1

= w’x: ‘x: 0

where ,x and ,s denote derivatives with respect to x and s. Note that
shear rotation was permitted at the geometric boundaries for both
clamped and hinged cases.

Prom preliminary results of the model, it has been found that the
Donnell shell approximations (7) are adequate to describe the deflection
of a composite shell under impact loads far greater than those required
to produce material failure. Comparisons with the full nonlinear
solution allowing large rotations and displacements were almost
identical. For an impact load of 800 lb, the rotations predicted by the
analysis did not exceed 11 degrees. Maximum rotations occurred along
the longitudinal axis, This is near the upper limit for validity of the
Donnell equations. However, as noted by Dennis (5:175,250), when the
Donnell equations are applied to a finite element formulation, the

resulting analysis can be accurate beyond the applicable range of the
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Donnell equations for the entire structure. Since the loads never
exceed 300 1b in the actual tests, the rotations will be very small, so
Donnell approximations should be accurate for the test conditionms.

Three of the [0/90]3; tests were selected for analysis. The tests
were thnse in which the impactor was dropped 1, 2 and 3.5 inches. The
corresponding impact energies are 0.55, 1.14 and 1.89 ft-1lb. Damage was
produced on the 1.89 ft~1b test, so this is a good case for comparison.
The maximum displacements at the panel center are shown in Table 4.1,
for both clamped and hinged analytical solutions and the experimental

measurement from the MTI-~1000 Fotonic Sensor.

Table 4.1. Center Deflections of [0/90]3; Panel Under Impact Loading

Impact Energy Maximum Load Peak Deflections (in)
(ft-1b) (1b)
0.55 152 0.064 (Experimental)

0.0645 (Analysis - Hinged)
0.0552 (Analysis - Clamped)

1.14 216 0.093 (Experimental)
0.0954 (Analysis - Hinged)
0.0836 (Analysis - Clamped)
1.89 262% 0.131 (Experimental)

0.1217 (Analytical - Hinged)
0.1090 (Analytical - Clamped)

* Peak load would have been 280 1b if the panel had not been
damaged. Deflections reported at time of damage.

The results are graphically shown in Pigure 4.2. At the time that
the third panel was damaged, the center deflection was almost exactly

half the height from the panel top to its edge. The hinged boundary
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conditions provide a good comparison with the experimental data. Thus,
the hold-down plate may be keeping the panel from pulling out from under
it, but in a dynamic sense, the clamping action fails to restrict
rotation. Considering the relative stiffness of the materials, this
appears reasonable.

In Figure 4.3, the radial displacement contours are shown for the
[0/90]3, panel test section at the time of failure, obtained from the
analysis. Lines of zero radial displacement are seen to occur at
approximately 1/4 the test section width. Within this area, the
deflection is inward (positive w), whereas outside the region the
displacement is negative in the radial direction. This is more easily
visualized in Pigure 4.4, where the deformed geometry at the time of
damage is shown after conversion to Cartesian coordinates.

The peak tensile stress in the panel occurs on the bottom layer
directly beneath the impact point. The maximum tensile stress
calculated in the test producing damage is 189 ksi., This is still less
than the material ultimate strength, so no fiber breakage is expected.
The experiments showed no surface damage at all on either the bottom or
top surface. However, the circumferential (or hoop) stress in the 0
degree layer is approximately 19 ksi at the panel center, as shown in
Pigure 4.5. This is over twice the material transverse strength, so
transverse failure of the layer is expected. This would be similar to
the damage observed in the 90 degree layers from the cross-sectioned
specimens. The hoop stress drops off rapidly, however, so that the

region over which this occurs is less than 1/2 inch in diameter.
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Figure 4.4. Deformed Geometry of [0/90]3. Panel at Time

of Failure
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One [% 45]3, panel was analyzed as well. For the 45 ply layup,
it is necessary to model the entire panel, since the deflection is not
symmetric in the four quadrants. A 16 by 16 element model was used,
with clamped boundary conditions applied on all four edges and the load
applied as a point force at the panel center. Results of the analysis

are shown in Table 4.2 iYor the peak deflection.

Table 4.2, Center Deflection for the [% 45]5; Panel

Impact Energy Maximum Load Peak Deflection (in)
(£ft~-1b) (1b)
1.91 ) 265 0.134 (Experimental)

0.109 (Analysis - Clamped)

A contour map of radial contours is shown in Figure 4.6 for this test
for the load at the time of damage. It is expected that the hinged

boundary conditions would prove more accurate in predicting the peak
deflection. Additional analyses should be performed to determine the

accuracy of the analysis for other conditions.
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V. Conclusions

Impact damage in graphite/epoxy panels occurs initially from
transverse cracking and delaminations. Only at much higher impact
energies is it necessary to consider surface damage and fiber failure.
The impact energies necessary to produce damage in 12-ply panels can be
less than 2 ft-1b. For 24-ply panels, damage occurs in the range of 4-5
ft-1b.

Damage can be characterized by C-scan and optical microscopy of
p.nel cross—sections. The C-scans indicate the general shape of the
damage, whereas the cross—sections identify the layers (or interfaces)
in which the damage is present. Damage in the form of transverse cracks
is prevalent in all ply layups studied. Delaminations occur at
interfaces where the directional stiffness changes (by a change in ply
angle).

The deflections of the panel which correlate with the impact
energies necessary to cause damage are approximately 1.5 to 2 times the
thickness of the panel for the 12-ply and 0.8 times the thickness for
24-ply panels.

The deflections have been measured using a noncontacting optical
sensor with overail success. The deflections could be measured

accurately up te the time of failure.
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A dynamic finite element model incorporating nonlinear geometry and
transverse shear deformation predicted the peak deflections of the panel
accurately by treating the boundary conditions as hinged. Although
clamped boundary conditions were not obtained, the panel edges were

restrained from in-plane motion.
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Appendix A!

Autoclave Cycle for AS4/2501-6 Graphite/Epoxy

1. Apply full vacuum, 25" Hg minimum, and 85 psi internal pressure

to the autoclave.
2. Heat air
3. Hold the
minutes.
4. Increase
5. Heat air
6. Hold the

7. Cool the

8. Vent the

to 240 * 5°F, in 30 minutes.

part at 240 * 5°F, 85 psi and full vacuum for 60

the pressure to 100 psi and vent the vacuum.
to 350 £ 5°F in 30 % 5 minutes.
part at 350 * 5°F and 100 psi for 120 minutes.

part below 150°F in 120 minutes while maintaining

pressure and open the autoclave.
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Appendix B: Experimental Data

Included in the Appendix are plots of all data collected during the
experimental test series. For each test, three figures are shown. The
first figure gives the load-time relationship (solid line) and the
energy~time relationship (dashed line) derived by numerical integration
from the initial velocity and the integrated impulse measured and
recorded from the Dynatup impact test fixture. The energy value at the
end of the load is the residual or abhsorbed energy. The second plot
shows the displacement-time function similarly derived by numerical
integration of the velocity. Positive time begins for these plots at
the initiation of the load function.

The third figure for each test is a composition of plots showing
the strain gage response and the deflection based on the MTI Fotonic
Sensor optical probe. Positive time for these plots begins at the time
the photoelectric eye on the velocity flag is first occluded by the
falling impactor. The methods by which these data were collected and

analyzed are discussed in the main body of the thesis.
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Figure B.19,
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Figure B.25. Load and Energy from Dynatup for [90/0]3S Panel,
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Pigure B.31. Load and Energy from Dynatup for [90/0]3S Panel,
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Figure B.32. Deflection from Dynatup for [90/0]38 Panel,
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Figure B.40. Load and Energy from Dynatup for [90/0]3S Panel,
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Pigure B.42. Strain and Deflection for [90/O]3S Panel,
Impact Energy = 2.47 ft-1b
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Figure B.46. Load and Energy from Dynatup for [i45]3s Panel,
Impact Energy = 1.40 ft-1b
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Figure B.47. Deflection from Dynatup for [t45]35 Panel,
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Pigure B.49. Load and Energy from Dynatup for {145]33 Panel,
impact Energy = 1.64 ft-1b
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Pigure B.52. Load and Energy from Dynatup for [145]38 Panel,
Impact Energy = 1.91 ft-1b
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Figure B.53. Deflection from Dynatup for [145]38 Panel,
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Figure B.54. Strain and Deflection for [145}38 Panel,
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Figure B.55. Load and Energy from Dynatup for [145]38 Panel,
Impact Energy = 2.23 ft-1b
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Figure B.56. Deflection from Dynatup for [145]38 Panel,
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Pigure B.61. Load and Energy from Dynatup for [0/90]68 Panel
Impact Energy = 1.63 ft-1b
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Pigure B.62. Deflection from Dynatup for [0/90]68 Panel,
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Impact Energy = 1.63 ft~1b

B-64




1

LOAD{ 1b ) xt0xx2

<[ GRAPH EPX ' T A
P 5 190 :

| O 36: 17

q .
N
“ 1 AFITS 501 |
o =
- g’ ~ i
; =
:::
=L S5
oJ oy
i
o L ! o
: /
- /
o~ Wz L R & L I -
'-1.5 .0 1.5 3.0 4.5 6.0
TIME( msec )
Impact
Specisen 1d Tewp Veloc. Energy Tine Load Energy

( f) (ft/sec) (ft-1b ) (meec) ([ b)) (ft-1b )
Max Ld Total Max Maxld  Total
AFI19_504 70, 4.58 2.23 2.05 4,57 6244 2,189 655

Figure B.64. Load and Energy from Dynatup for [0/9°]6S Panel,
Impact Energy = 2.23 ft-1b
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Figure B.65. Deflection from Dynatup for [0/90]68 Panel,
Impact Bnergy = 2.23 ft-1b

B-66



Deflection (in)

Microstrain

Microstrain

e o
o ©
S ©

1 1 1 | 1 L i 1

-0.02 :
8

Figure B.66.

13
Time (milliseconds)

Strain and Deflection for [0/90]6s

Panel,
Impact Energy = 2.23 ft-1b

B-67



I a0 A A & A B T B v B aF B B B

LOAD( 1b ) x10%x2

= [ GRAPH EPX

SEP 4, 1990
o | 12:40:32 i
© ! AFITB_0f

(Y]

T waman s am T - - T .--.—-.-_.1
|

-1.5 0 1.5 3.0 4.5 6.0
TIME ( msec )
Impact
Specimen Id Temp Veloc. Energy Tise Load Energy
(£ (ft/sec) (ft-1b ) (msec) ( 1b ) {ft-1b )
Max Ld Total HMax Maxld  Total
AFITB_04 70. 5.6 3.35 2.03 45 7584 3.2%5 .956

Figure B.67. Load and Energy from Dynatup for [0/90]63 Panel,
Impact Energy = 3.35 ft-1b
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Pigure B.68. Deflection from Dynatup for [0/90]68 Panel,
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Pigure B.70.
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Impact Energy = 4.50 ft~1b
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FPigure B.71. Deflection from Dynatup for [0/90]6S Panel,
Impact Energy = 4.50 f£t-1b

B~72




HE N DN A NS I O TEN O EE K A A A A B e

Microstrain

Deflection (in) Microstrain

I O Nt |

TS IS T I T T I T B |

-0.02 ] ! 1 ! | t 1 ] I | 1 L 1 ]
10 15

Time (milliseconds)

N
o

Figure B.72. Strain and Deflection for [0/90]6S Panel,
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Figure B.73. Load and Energy from Dynatup for [90/0]6S Panel,
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Figure B.76.

Load and Energy from Dynatup for [90/0]¢g Panel,
Impact Energy = 2.23 ft-1b
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Figure B.77. Deflection from Dynatup for [90/0]68 Panel,
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Figure B.75. Load and Energy from Dynatup for [90/0]¢g Panel,
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Figure B.80. Deflection from Dynatup for [90/0]65 Panel,

Impact Energy = 3.34 ft-1b
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Figure B.82. Load and Energy from Dynatup for [90/0]65 Panel
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